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Concentration of Measures

Concentration of Measures

Concentration of measures is a central issue in probability theory, and
it is strongly related to information theory and coding.

Roughly speaking, the concentration of measure phenomenon can be
stated in the following simple way: “A random variable that depends
in a smooth way on many independent random variables (but not too
much on any of them) is essentially constant” (Talagrand, 1996).
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Concentration of measures is a central issue in probability theory, and
it is strongly related to information theory and coding.

Roughly speaking, the concentration of measure phenomenon can be
stated in the following simple way: “A random variable that depends
in a smooth way on many independent random variables (but not too
much on any of them) is essentially constant” (Talagrand, 1996).

Concentration Inequalities

Concentration inequalities provide upper bounds on tail probabilities
of the type P(|X − x| ≥ t) (or P(X − x ≥ t) for a random variable
(RV) X, where x denotes the expectation or median of X.

Several techniques were developed to prove concentration.
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Survey Papers on Concentration Inequalities for Martingales

Survey Papers on Concentration Inequalities for Martingales
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Concentration via the Martingale Approach

Definition - [Discrete-Time Martingales]

Let (Ω,F , P) be a probability space. Let F0 ⊆ F1 ⊆ . . . be a sequence of
sub σ-algebras of F (which is called a filtration). A sequence X0,X1, . . .

of RVs is a martingale if for every i

1 Xi : Ω → R is Fi-measurable, i.e.,

{ω ∈ Ω : Xi(ω) ≤ t} ∈ Fi ∀i ∈ {0, 1, . . .} , t ∈ R.

2 E[|Xi|] < ∞.

3 Xi = E[Xi+1|Fi] almost surely.
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Concentration via the Martingale Approach

Definition - [Discrete-Time Martingales]

Let (Ω,F , P) be a probability space. Let F0 ⊆ F1 ⊆ . . . be a sequence of
sub σ-algebras of F (which is called a filtration). A sequence X0,X1, . . .

of RVs is a martingale if for every i

1 Xi : Ω → R is Fi-measurable, i.e.,

{ω ∈ Ω : Xi(ω) ≤ t} ∈ Fi ∀i ∈ {0, 1, . . .} , t ∈ R.

2 E[|Xi|] < ∞.

3 Xi = E[Xi+1|Fi] almost surely.

A Simple Example: Random walk

Xn =
∑n

i=0 Ui where P(Ui = +1) = P(Ui = −1) = 1
2 are i.i.d. RVs.
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Concentration via the Martingale Approach

Martingales – Remarks

Remark 1

Given a RV X ∈ L
1(Ω,F , P) and a filtration of sub σ-algebras {Fi}, let

Xi = E[X|Fi] i = 0, 1, . . . .

Then, the sequence X0,X1, . . . forms a martingale.
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Martingales – Remarks

Remark 1

Given a RV X ∈ L
1(Ω,F , P) and a filtration of sub σ-algebras {Fi}, let

Xi = E[X|Fi] i = 0, 1, . . . .

Then, the sequence X0,X1, . . . forms a martingale.

Remark 2

Choose F0 = {Ω, ∅} and Fn = F , then Remark 1 gives a martingale with

X0 = E[X|F0] = E[X] (F0 doesn’t provide information about X).

Xn = E[X|Fn] = X a.s. (Fn provides full information about X).
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Concentration via the Martingale Approach

Concentration via the Martingale Approach

Theorem - [Azuma-Hoeffding inequality]

Let {Xk,Fk}∞k=0 be a discrete-parameter real-valued martingale. If the
jumps of the sequence {Xk} are bounded almost surely (a.s.), i.e.,

|Xi − Xi−1| ≤ di ∀ i = 1, 2, . . . , n a.s.

then

P(|Xn − X0| ≥ r) ≤ 2 exp

(
− r2

2
∑n

i=1 d2
i

)
, ∀ r > 0.
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Concentration via the Martingale Approach

Theorem - [Azuma-Hoeffding inequality]

Let {Xk,Fk}∞k=0 be a discrete-parameter real-valued martingale. If the
jumps of the sequence {Xk} are bounded almost surely (a.s.), i.e.,

|Xi − Xi−1| ≤ di ∀ i = 1, 2, . . . , n a.s.

then

P(|Xn − X0| ≥ r) ≤ 2 exp

(
− r2

2
∑n

i=1 d2
i

)
, ∀ r > 0.

Concentration Inequalities Around the Average

The Azuma-Hoeffding inequality and Remark 2 enable to get a
concentration inequality for X around its expected value (E[X]).
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Refined Versions of the Azuma-Hoeffding Inequality

But, the Azuma-Hoeffding inequality is not tight !.
For example, if r >

∑n
i=1 di ⇒ P(|Xn − X0| ≥ r) = 0.
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Refined Versions of the Azuma-Hoeffding Inequality

Theorem (Th. 2 – McDiarmid ’89)

Let {Xk,Fk}∞k=0 be a discrete-parameter real-valued martingale. Assume
that, for some constants d, σ > 0, the following two requirements hold a.s.

|Xk − Xk−1| ≤ d,

Var(Xk|Fk−1) = E
[
(Xk − Xk−1)

2 | Fk−1

]
≤ σ2

for every k ∈ {1, . . . , n}. Then, for every α ≥ 0,

P(|Xn − X0| ≥ αn) ≤ 2 exp

(
−n D

(
δ + γ

1 + γ

∣∣∣
∣∣∣

γ

1 + γ

))

where γ , σ2

d2 , δ , α
d
, and D(p||q) , p ln

(
p
q

)
+ (1 − p) ln

(
1−p
1−q

)
.
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Refined Versions of the Azuma-Hoeffding Inequality

Corollary

Under the conditions of Theorem 2, for every α ≥ 0,

P(|Xn − X0| ≥ αn) ≤ 2 exp (−nf(δ))

where

f(δ) =

{
ln(2)

[
1 − h2

(
1−δ
2

)]
, 0 ≤ δ ≤ 1

+∞, δ > 1

and h2(x) , −x log2(x) − (1 − x) log2(1 − x) for 0 ≤ x ≤ 1.
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Refined Versions of the Azuma-Hoeffding Inequality

Corollary

Under the conditions of Theorem 2, for every α ≥ 0,

P(|Xn − X0| ≥ αn) ≤ 2 exp (−nf(δ))

where

f(δ) =

{
ln(2)

[
1 − h2

(
1−δ
2

)]
, 0 ≤ δ ≤ 1

+∞, δ > 1

and h2(x) , −x log2(x) − (1 − x) log2(1 − x) for 0 ≤ x ≤ 1.

Proof

Set γ = 1 in Theorem 2.
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Refined Versions of the Azuma-Hoeffding Inequality

Corollary

Under the conditions of Theorem 2, for every α ≥ 0,

P(|Xn − X0| ≥ αn) ≤ 2 exp (−nf(δ))

where

f(δ) =

{
ln(2)

[
1 − h2

(
1−δ
2

)]
, 0 ≤ δ ≤ 1

+∞, δ > 1

and h2(x) , −x log2(x) − (1 − x) log2(1 − x) for 0 ≤ x ≤ 1.

Proof

Set γ = 1 in Theorem 2.

Observation (first set γ = 1, and then use Pinsker’s Inequality)

Theorem 2 ⇒ Corollary ⇒ Azuma-Hoeffding inequality.

I. Sason (Technion) Seminar Talk, ETH, Zurich, Switzerland August 22–23, 2012. 9 / 90



Refined Versions of the Azuma-Hoeffding Inequality
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A Simple Example to Motivate Further Improvements

A Simple Example to Motivate Further Improvements

Let

(Ω,F , P) be a probability space.

d > 0 and γ ∈ (0, 1] be fixed numbers.

{Uk}k∈N be i.i.d. random variables where

P(Uk = +d) = P(Uk = −d) =
γ

2
, P(Uk = 0) = 1 − γ, ∀ k ∈ N.
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A Simple Example to Motivate Further Improvements

A Simple Example to Motivate Further Improvements

Let

(Ω,F , P) be a probability space.

d > 0 and γ ∈ (0, 1] be fixed numbers.

{Uk}k∈N be i.i.d. random variables where

P(Uk = +d) = P(Uk = −d) =
γ

2
, P(Uk = 0) = 1 − γ, ∀ k ∈ N.

Consider the Markov process {Xk}k≥0 where X0 = 0 and

Xk = Xk−1 + Uk, ∀k ∈ N.
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A Simple Example to Motivate Further Improvements

A Simple Example (Cont.) - Large Deviation Analysis

From Cramér’s theorem in R, for every α ≥ E[U1] = 0,

lim
n→∞

− 1

n
ln P(Xn ≥ αn) = I(α)

where the rate function is given by

I(α) = sup
t≥0

{tα − ln E[exp(tU1)]} .
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A Simple Example (Cont.) - Large Deviation Analysis

From Cramér’s theorem in R, for every α ≥ E[U1] = 0,

lim
n→∞

− 1

n
ln P(Xn ≥ αn) = I(α)

where the rate function is given by

I(α) = sup
t≥0

{tα − ln E[exp(tU1)]} .

Let δ , α
d
. Calculation shows that

I(α) = δx − ln
(
1 + γ

[
cosh(x) − 1

])

x , ln

(
δ(1 − γ) +

√
δ2(1 − γ)2 + γ2(1 − δ2)

γ(1 − δ)

)
.
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A Simple Example to Motivate Further Improvements

A Simple Example (Cont.) - Large Deviation Analysis

Lets examine the martingale approach in this simple case, where

Xk =

k∑

i=1

Ui, ∀ k ∈ N, X0 = 0

with the natural filtration

Fk = σ(U1, . . . , Uk), ∀ k ∈ N, F0 = {∅,Ω}.
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A Simple Example to Motivate Further Improvements

A Simple Example (Cont.) - Large Deviation Analysis

Lets examine the martingale approach in this simple case, where

Xk =

k∑

i=1

Ui, ∀ k ∈ N, X0 = 0

with the natural filtration

Fk = σ(U1, . . . , Uk), ∀ k ∈ N, F0 = {∅,Ω}.

In this case, the martingale has bounded increments, and for every k ∈ N

|Xk − Xk−1| ≤ d

E[(Xk − Xk−1)
2 | Fk−1] = Var(Uk) = γd2

almost surely.
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A Simple Example to Motivate Further Improvements

A Simple Example (Cont.) - Large Deviation Analysis

Via the martingale approach, the following exponential inequality follows:

P (Xn − X0 ≥ αn) ≤ exp

(
−n D

(
δ + γ

1 + γ

∣∣∣
∣∣∣

γ

1 + γ

))

where δ , α
d
, and

D(p||q) , p ln
(p

q

)
+ (1 − p) ln

(1 − p

1 − q

)
, ∀ p, q ∈ [0, 1]

is the divergence (relative entropy) between the probability distributions
(p, 1 − p) and (q, 1 − q). If δ > 1, then the above probability is zero.
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A Simple Example (Cont.) - Large Deviation Analysis

Via the martingale approach, the following exponential inequality follows:

P (Xn − X0 ≥ αn) ≤ exp

(
−n D

(
δ + γ

1 + γ

∣∣∣
∣∣∣

γ

1 + γ

))

where δ , α
d
, and

D(p||q) , p ln
(p

q

)
+ (1 − p) ln

(1 − p

1 − q

)
, ∀ p, q ∈ [0, 1]

is the divergence (relative entropy) between the probability distributions
(p, 1 − p) and (q, 1 − q). If δ > 1, then the above probability is zero.

This exponential bound is not tight (unless γ = 1), and the gap to the
exact asymptotic exponent increases as the value of γ ∈ (0, 1] is decreased.
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A Simple Example to Motivate Further Improvements

Comparison of the Exact Exponent and Its Lower Bound
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A Simple Example to Motivate Further Improvements

Comparison of the Exact Exponent and Its Lower Bound (Cont.)
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A Simple Example to Motivate Further Improvements

Questions:

Why the lower bound on the exponent is not asymptotically tight ?

Why this gap increases as the value of γ is decreased ?

How this situation can be improved via the martingale approach ?
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A Simple Example to Motivate Further Improvements

Questions:

Why the lower bound on the exponent is not asymptotically tight ?

Why this gap increases as the value of γ is decreased ?

How this situation can be improved via the martingale approach ?

This exponential bound relies on Bennett’s inequality: Since Uk ≤ d,
E[Uk] = 0, and Var(Uk) = γd2, then

E [exp(tUk)] ≤
γ exp(td) + exp(−γtd)

1 + γ
, ∀ t ≥ 0.
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A Simple Example to Motivate Further Improvements

Questions:

Why the lower bound on the exponent is not asymptotically tight ?

Why this gap increases as the value of γ is decreased ?

How this situation can be improved via the martingale approach ?

This exponential bound relies on Bennett’s inequality: Since Uk ≤ d,
E[Uk] = 0, and Var(Uk) = γd2, then

E [exp(tUk)] ≤
γ exp(td) + exp(−γtd)

1 + γ
, ∀ t ≥ 0.

The probability distribution that achieves Bennett’s inequality with
equality is asymmetric (unless γ = 1), and is equal to

P(Ũk = d) =
γ

1 + γ
, P(Ũk = −γd) =

1

1 + γ
.

By reducing the value of γ ∈ (0, 1], the above asymmetry grows. Indeed,
this enlarges the gap to the exact asymptotic exponent.
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Conditionally Symmetric Martingales

Interim Conclusion

An improvement is likely to be obtained by a refinement of Bennett’s
inequality when Xk is conditionally symmetric given Fk−1.
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Conditionally Symmetric Martingales

Interim Conclusion

An improvement is likely to be obtained by a refinement of Bennett’s
inequality when Xk is conditionally symmetric given Fk−1.

Definition: Conditionally Symmetric Martingales

Let {Xk,Fk}k∈N0 , where N0 , N∪ {0}, be a discrete-time and real-valued
martingale, and let ξk , Xk − Xk−1 for every k ∈ N. Then {Xk,Fk}k∈N0

is a conditionally symmetric martingale if, conditioned on Fk−1, the RV ξk

is symmetrically distributed around zero.
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Conditionally Symmetric Martingales

Interim Conclusion

An improvement is likely to be obtained by a refinement of Bennett’s
inequality when Xk is conditionally symmetric given Fk−1.

Definition: Conditionally Symmetric Martingales

Let {Xk,Fk}k∈N0 , where N0 , N∪ {0}, be a discrete-time and real-valued
martingale, and let ξk , Xk − Xk−1 for every k ∈ N. Then {Xk,Fk}k∈N0

is a conditionally symmetric martingale if, conditioned on Fk−1, the RV ξk

is symmetrically distributed around zero.

Definition: Conditionally Symmetric Sub/ Supermartingales

Let {Xk,Fk}k∈N0 be a discrete-time real-valued sub or supermartingale,
and let ηk , Xk − E[Xk|Fk−1] for every k ∈ N. Then it is conditionally
symmetric if, conditioned on Fk−1, the RV ηk is symmetrically distributed
around zero.
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Conditionally Symmetric Martingales

Construction of Conditionally Symmetric Martingales

Example 1: Let

(Ω,F , P) be a probability space

{Uk}k∈N ⊆ L1(Ω,F , P) be independent random variables that are
symmetrically distributed around zero

{Fk}k≥0 be the natural filtration where F0 = {∅,Ω} and
Fk = σ(U1, . . . , Uk), ∀ k ∈ N.

For k ∈ N, let Ak ∈ L∞(Ω,Fk−1, P) be an Fk−1-measurable random
variable with a finite essential supremum.
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Conditionally Symmetric Martingales

Construction of Conditionally Symmetric Martingales

Example 1: Let

(Ω,F , P) be a probability space

{Uk}k∈N ⊆ L1(Ω,F , P) be independent random variables that are
symmetrically distributed around zero

{Fk}k≥0 be the natural filtration where F0 = {∅,Ω} and
Fk = σ(U1, . . . , Uk), ∀ k ∈ N.

For k ∈ N, let Ak ∈ L∞(Ω,Fk−1, P) be an Fk−1-measurable random
variable with a finite essential supremum.

Define a new sequence of random variables in L1(Ω,F , P) where

Xn =

n∑

k=1

AkUk, ∀n ∈ N

and X0 = 0. Then, {Xn,Fn}n∈N0 is a conditionally symmetric martingale.
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Conditionally Symmetric Martingales

Construction of Conditionally Symmetric Martingales

Example 2: Let

{Xn,Fn}n∈N0 be a conditionally symmetric martingale

Ak ∈ L∞(Ω,Fk−1, P) be an Fk−1-measurable random variable with a
finite essential supremum.

Define Y0 = 0 and Yn =
∑n

k=1 Ak(Xk − Xk−1), ∀n ∈ N.
Then, {Yn,Fn}n∈N0 is a conditionally symmetric martingale.
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Conditionally Symmetric Martingales

Construction of Conditionally Symmetric Martingales

Example 2: Let

{Xn,Fn}n∈N0 be a conditionally symmetric martingale

Ak ∈ L∞(Ω,Fk−1, P) be an Fk−1-measurable random variable with a
finite essential supremum.

Define Y0 = 0 and Yn =
∑n

k=1 Ak(Xk − Xk−1), ∀n ∈ N.
Then, {Yn,Fn}n∈N0 is a conditionally symmetric martingale.

Example 3: A sampled Brownian motion is a discrete time, conditionally
symmetric martingale with un-bounded increments.
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Conditionally Symmetric Martingales

Construction of Conditionally Symmetric Martingales

Example 2: Let

{Xn,Fn}n∈N0 be a conditionally symmetric martingale

Ak ∈ L∞(Ω,Fk−1, P) be an Fk−1-measurable random variable with a
finite essential supremum.

Define Y0 = 0 and Yn =
∑n

k=1 Ak(Xk − Xk−1), ∀n ∈ N.
Then, {Yn,Fn}n∈N0 is a conditionally symmetric martingale.

Example 3: A sampled Brownian motion is a discrete time, conditionally
symmetric martingale with un-bounded increments.

Goal: Our next goal is to demonstrate how the assumption of the
conditional symmetry improves existing exponential inequalities for
discrete-time real-valued martingales with bounded increments.
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Exponential Inequalities for Conditionally Symmetric Martingales

Exponential Inequalities for Conditionally Symmetric Martingales

Lemma

Let X be a real-valued RV with a symmetric distribution around zero, a
support [−d, d], and assume Var(X) ≤ γd2 for some d > 0 and γ ∈ [0, 1].
Let h be a real-valued convex function, and assume that h(d2) ≥ h(0).
Then,

E[h(X2)] ≤ (1 − γ)h(0) + γh(d2)

with equality if P(X = ±d) = γ
2 , P(X = 0) = 1 − γ.

I. Sason (Technion) Seminar Talk, ETH, Zurich, Switzerland August 22–23, 2012. 21 / 90



Exponential Inequalities for Conditionally Symmetric Martingales

Exponential Inequalities for Conditionally Symmetric Martingales

Lemma

Let X be a real-valued RV with a symmetric distribution around zero, a
support [−d, d], and assume Var(X) ≤ γd2 for some d > 0 and γ ∈ [0, 1].
Let h be a real-valued convex function, and assume that h(d2) ≥ h(0).
Then,

E[h(X2)] ≤ (1 − γ)h(0) + γh(d2)

with equality if P(X = ±d) = γ
2 , P(X = 0) = 1 − γ.

Proof

h convex, X ∈ [−d, d] a.s. ⇒ h(X2) ≤ h(0) +
(

X
d

)2 (
h(d2) − h(0)

)
.

Taking expectations on both sides gives the inequality, with an
equality for the above symmetric distribution.
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Exponential Inequalities for Conditionally Symmetric Martingales

Exp. Inequalities for Conditionally Symmetric Martingales (Cont.)

Corollary

Let X be a real-valued RV with a symmetric distribution around zero, a
support [−d, d], and assume Var(X) ≤ γd2 for some d > 0 and γ ∈ [0, 1].
Then,

E
[
exp(λX)

]
≤ 1 + γ

[
cosh(λd) − 1

]
, ∀λ ∈ R

with equality if P(X = ±d) = γ
2 , P(X = 0) = 1 − γ.
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Exponential Inequalities for Conditionally Symmetric Martingales

Exp. Inequalities for Conditionally Symmetric Martingales (Cont.)

Corollary

Let X be a real-valued RV with a symmetric distribution around zero, a
support [−d, d], and assume Var(X) ≤ γd2 for some d > 0 and γ ∈ [0, 1].
Then,

E
[
exp(λX)

]
≤ 1 + γ

[
cosh(λd) − 1

]
, ∀λ ∈ R

with equality if P(X = ±d) = γ
2 , P(X = 0) = 1 − γ.

Proof

Symmetric distribution of X ⇒ E
[
exp(λX)

]
= E

[
cosh(λX)

]
.

The corollary follows from the lemma since, for every x ∈ R,

cosh(λx) = h(x2) where h(x) ,
∑∞

n=0
λ2n|x|n
(2n)! is a convex function,

and h(d2) = cosh(λd) ≥ 1 = h(0).
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Exponential Inequalities for Conditionally Symmetric Martingales

Theorem 2 (I. S., 2012)

Let {Xk,Fk}k∈N0 be a discrete-time real-valued and conditionally
symmetric martingale. Assume that, for some fixed numbers d, σ > 0, the
following two requirements are satisfied a.s.

|Xk − Xk−1| ≤ d, Var(Xk|Fk−1) = E
[
(Xk − Xk−1)

2 | Fk−1

]
≤ σ2

for every k ∈ N.
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Exponential Inequalities for Conditionally Symmetric Martingales

Theorem 2 (I. S., 2012)

Let {Xk,Fk}k∈N0 be a discrete-time real-valued and conditionally
symmetric martingale. Assume that, for some fixed numbers d, σ > 0, the
following two requirements are satisfied a.s.

|Xk − Xk−1| ≤ d, Var(Xk|Fk−1) = E
[
(Xk − Xk−1)

2 | Fk−1

]
≤ σ2

for every k ∈ N. Then, for every α ≥ 0 and n ∈ N,

P

(
max

1≤k≤n
|Xk − X0| ≥ αn

)
≤ 2 exp

(
−nE(γ, δ)

)

where

γ ,
σ2

d2
, δ ,

α

d

and for γ ∈ (0, 1] and δ ∈ [0, 1), the exponent E(γ, δ) is given as follows:
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Exponential Inequalities for Conditionally Symmetric Martingales

Theorem 2 (Cont.)

E(γ, δ) , δx − ln
(
1 + γ

[
cosh(x) − 1

])

x , ln

(
δ(1 − γ) +

√
δ2(1 − γ)2 + γ2(1 − δ2)

γ(1 − δ)

)
.

If δ > 1, then the probability is zero (so E(γ, δ) , +∞), and
E(γ, 1) = ln

(
2
γ

)
.
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Exponential Inequalities for Conditionally Symmetric Martingales

Theorem 2 (Cont.)

E(γ, δ) , δx − ln
(
1 + γ

[
cosh(x) − 1

])

x , ln

(
δ(1 − γ) +

√
δ2(1 − γ)2 + γ2(1 − δ2)

γ(1 − δ)

)
.

If δ > 1, then the probability is zero (so E(γ, δ) , +∞), and
E(γ, 1) = ln

(
2
γ

)
.

Asymptotic Optimality of the Exponent

The example we studied earlier shows that the exponent of the bound in
Theorem 1 is asymptotically optimal. That is, there exists a conditionally
symmetric martingale, satisfying the conditions in this theorem, that
attains the exponent E(γ, δ) in the limit where n → ∞.
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Exponential Inequalities for Conditionally Symmetric Martingales

Theorem 2 should be compared to the bound in Theorem 1 which does
not require the conditional symmetry property.

Theorem 1 (Reminder)

[McDiarmid 1989, book of Dembo & Zeitouni (Corollary 2.4.7)]

Let {Xk,Fk}k∈N0 be a discrete-time real-valued martingale with bounded
jumps. Assume that the two conditions on the bounded increments and
conditional variance from Theorem 1 are satisfied a.s. for every k ∈ N.
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Exponential Inequalities for Conditionally Symmetric Martingales

Theorem 2 should be compared to the bound in Theorem 1 which does
not require the conditional symmetry property.

Theorem 1 (Reminder)

[McDiarmid 1989, book of Dembo & Zeitouni (Corollary 2.4.7)]

Let {Xk,Fk}k∈N0 be a discrete-time real-valued martingale with bounded
jumps. Assume that the two conditions on the bounded increments and
conditional variance from Theorem 1 are satisfied a.s. for every k ∈ N.
Then, for every α ≥ 0 and n ∈ N,

P

(
max

1≤k≤n
|Xk − X0| ≥ αn

)
≤ 2 exp

(
−n D

(
δ + γ

1 + γ

∣∣∣
∣∣∣

γ

1 + γ

))

where γ , σ2

d2 and δ , α
d

were introduced earlier, and

D(p||q) , p ln
(p

q

)
+ (1 − p) ln

(1 − p

1 − q

)
, ∀ p, q ∈ [0, 1].

If δ > 1, then the probability is zero.
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Exponential Inequalities for Conditionally Symmetric Martingales

Proof Technique for Theorems 1 and 2

Define Xn − X0 =
∑n

k=1 ξk where ξk , Xk − Xk−1.
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Exponential Inequalities for Conditionally Symmetric Martingales

Proof Technique for Theorems 1 and 2

Define Xn − X0 =
∑n

k=1 ξk where ξk , Xk − Xk−1.

|ξk| ≤ d, E
[
ξk | Fk−1

]
= 0, Var(ξk | Fk−1) ≤ γd2. The RV ξk is

Fk-measurable.
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Exponential Inequalities for Conditionally Symmetric Martingales

Proof Technique for Theorems 1 and 2

Define Xn − X0 =
∑n

k=1 ξk where ξk , Xk − Xk−1.

|ξk| ≤ d, E
[
ξk | Fk−1

]
= 0, Var(ξk | Fk−1) ≤ γd2. The RV ξk is

Fk-measurable.

Exponentiation and the maximal inequality for submartingales give
that, for every α ≥ 0,

P

(
max

1≤k≤n
(Xk − X0) ≥ nα

)
≤ e−nαt

E

[
exp

(
t

n∑

k=1

ξk

)]
, ∀ t ≥ 0.
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Exponential Inequalities for Conditionally Symmetric Martingales

Proof Technique for Theorems 1 and 2

Define Xn − X0 =
∑n

k=1 ξk where ξk , Xk − Xk−1.

|ξk| ≤ d, E
[
ξk | Fk−1

]
= 0, Var(ξk | Fk−1) ≤ γd2. The RV ξk is

Fk-measurable.

Exponentiation and the maximal inequality for submartingales give
that, for every α ≥ 0,

P

(
max

1≤k≤n
(Xk − X0) ≥ nα

)
≤ e−nαt

E

[
exp

(
t

n∑

k=1

ξk

)]
, ∀ t ≥ 0.

Since {Fi} forms a filtration, then for every t ≥ 0

E

[
exp

(
t

n∑

k=1

ξk

)]
= E

[
exp

(
t

n−1∑

k=1

ξk

)
E
[
exp(tξn) | Fn−1

]
]
.
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Exponential Inequalities for Conditionally Symmetric Martingales

Proof Technique for Theorems 1 and 2 (Cont.)

For proving Theorem 2, the use of Bennett’s inequality gives

E [exp(tξk) | Fk−1] ≤
γ exp(td) + exp(−γtd)

1 + γ
.
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Proof Technique for Theorems 1 and 2 (Cont.)

For proving Theorem 2, the use of Bennett’s inequality gives

E [exp(tξk) | Fk−1] ≤
γ exp(td) + exp(−γtd)

1 + γ
.

For the refinement in Theorem 1 for conditionally symmetric
martingales with bounded increments, use of Lemma 1 gives

E [exp(tξk) | Fk−1] ≤ 1 + γ
[
cosh(td) − 1

]
.
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Proof Technique for Theorems 1 and 2 (Cont.)

For proving Theorem 2, the use of Bennett’s inequality gives

E [exp(tξk) | Fk−1] ≤
γ exp(td) + exp(−γtd)

1 + γ
.

For the refinement in Theorem 1 for conditionally symmetric
martingales with bounded increments, use of Lemma 1 gives

E [exp(tξk) | Fk−1] ≤ 1 + γ
[
cosh(td) − 1

]
.

In both cases, one gets exponential bounds with the free parameter t.
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Proof Technique for Theorems 1 and 2 (Cont.)

For proving Theorem 2, the use of Bennett’s inequality gives

E [exp(tξk) | Fk−1] ≤
γ exp(td) + exp(−γtd)

1 + γ
.

For the refinement in Theorem 1 for conditionally symmetric
martingales with bounded increments, use of Lemma 1 gives

E [exp(tξk) | Fk−1] ≤ 1 + γ
[
cosh(td) − 1

]
.

In both cases, one gets exponential bounds with the free parameter t.

Optimization over t ≥ 0 & union bound to get two-sided inequalities.
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Exponential Inequalities for Conditionally Symmetric Martingales

Proof Technique for Theorems 1 and 2 (Cont.)

For proving Theorem 2, the use of Bennett’s inequality gives

E [exp(tξk) | Fk−1] ≤
γ exp(td) + exp(−γtd)

1 + γ
.

For the refinement in Theorem 1 for conditionally symmetric
martingales with bounded increments, use of Lemma 1 gives

E [exp(tξk) | Fk−1] ≤ 1 + γ
[
cosh(td) − 1

]
.

In both cases, one gets exponential bounds with the free parameter t.

Optimization over t ≥ 0 & union bound to get two-sided inequalities.

The asymptotic optimality of the exponent in Theorem 1 follows from
the simple example that was shown earlier.
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Relation to Classical Results in Probability Theory

Relation to Classical Results in Probability Theory:

The above concentration inequalities are linked to

Central limit theorem for martingales

Law of iterated logarithm

Moderate deviations principle for real-valued i.i.d. RVs.

For proofs and discussions on these relations, see Section IV in
http://arxiv.org/abs/1111.1977.
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Application 1: MDP for Binary Hypothesis Testing

Binary Hypothesis Testing

Let the RVs X1,X2.... be i.i.d. ∼ Q, and consider two hypotheses:

H1 : Q = P1.

H2 : Q = P2.

For simplicity, assume that the RVs are discrete, and take their values on a
finite alphabet X where P1(x), P2(x) > 0 for every x ∈ X .

The log-likelihood ratio (LLR): L(Xn
1 ) =

∑n
i=1 ln P1(Xi)

P2(Xi)
.

By the strong law of large numbers (SLLN), if H1 is true, then a.s.

limn→∞
L(Xn

1 )
n

= D(P1||P2) and, if H2, limn→∞
L(Xn

1 )
n

= −D(P2||P1).

Let λ, λ ∈ R satisfy −D(P2||P1) < λ ≤ λ < D(P1||P2).
Decide on H1 if L(Xn

1 ) > nλ and on H2 if L(Xn
1 ) < nλ.
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Application 1: MDP for Binary Hypothesis Testing

Let
α(1)

n , Pn
1

(
L(Xn

1 ) ≤ nλ
)

α(2)
n , Pn

1

(
L(Xn

1 ) ≤ nλ
)

and
β(1)

n , Pn
2

(
L(Xn

1 ) ≥ nλ
)

β(2)
n , Pn

2

(
L(Xn

1 ) ≥ nλ
)

then

α
(1)
n and β

(1)
n are the probabilities of either making an error/ declaring

an erasure under, respectively, hypotheses H1 and H2.

α
(2)
n and β

(2)
n are the probabilities of making an error under,

respectively, hypotheses H1 and H2.

Large deviations analysis ⇒ αn and βn both decay exponentially to zero
as a function of the block length (n).
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Application 1: MDP for Binary Hypothesis Testing

Moderate-Deviations Analysis for Binary Hypothesis Testing

Instead of the setting where the thresholds are kept fixed
independently of n, let these thresholds tend to their asymptotic
limits (due to the SLLN), i.e.,

lim
n→∞

λ
(n)

= D(P1||P2), lim
n→∞

λ(n) = −D(P2||P1).

In moderate-deviations analysis of binary hypothesis testing, we are
interested to analyze the case where

1 The block length n of the input sequence tends to infinity.
2 The thresholds tend to their asymptotic limits

simultaneously.
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Application 1: MDP for Binary Hypothesis Testing

Moderate-Deviations Analysis for Binary Hypothesis Testing (Cont.)

To this end, let η ∈ (1
2 , 1), and ε1, ε2 > 0 be arbitrary fixed numbers. Set

the upper and lower thresholds to

λ
(n)

= D(P1||P2) − ε1n
−(1−η)

λ(n) = −D(P2||P1) + ε2n
−(1−η).
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Application 1: MDP for Binary Hypothesis Testing

Moderate-Deviations Analysis via the Martingale Approach

Under hypothesis H1, construct the martingale {Uk,Fk}n
k=0 where

F0 ⊆ F1 ⊆ . . .Fn is the natural filtration

F0 = {∅,Ω}, Fk = σ(X1, . . . ,Xk), ∀ k ∈ {1, . . . , n}.

Uk = EP n
1

[
L(Xn

1 ) | Fk

]
.
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Application 1: MDP for Binary Hypothesis Testing

Moderate-Deviations Analysis via the Martingale Approach

Under hypothesis H1, construct the martingale {Uk,Fk}n
k=0 where

F0 ⊆ F1 ⊆ . . .Fn is the natural filtration

F0 = {∅,Ω}, Fk = σ(X1, . . . ,Xk), ∀ k ∈ {1, . . . , n}.

Uk = EP n
1

[
L(Xn

1 ) | Fk

]
.

For every k ∈ {0, . . . , n}: Uk =
∑k

i=1 ln P1(Xi)
P2(Xi)

+ (n − k)D(P1||P2).
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Application 1: MDP for Binary Hypothesis Testing

Moderate-Deviations Analysis via the Martingale Approach (Cont.)

U0 = nD(P1||P2), and Un = L(Xn
1 ).

Let

d1 , max
x∈X

∣∣∣∣ln
P1(x)

P2(x)
− D(P1||P2)

∣∣∣∣ ⇒ d1 < ∞.

⇒ |Uk − Uk−1| ≤ d1 holds a.s. for every k ∈ {1, . . . , n}.

Due to the independence of the RVs in the sequence {Xi}

EP n
1

[
(Uk − Uk−1)

2 | Fk−1

]

=
∑

x∈X

{
P1(x)

(
ln

P1(x)

P2(x)
− D(P1||P2)

)2
}

, σ2
1 .
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Application 1: MDP for Binary Hypothesis Testing

Moderate-Deviations Analysis via the Martingale Approach (Cont.)

Let ε1 > 0 and η ∈ (1
2 , 1) be two arbitrarily fixed numbers as above.

Under hypothesis H1, it follows from Theorem 2 and the above
construction of a martingale that

Pn
1

(
L(Xn

1 ) ≤ nλ
(n)

) ≤ exp

(
−nD

(
δ
(η,n)
1 + γ1

1 + γ1

∣∣∣∣ γ1

1 + γ1

))

where

δ
(η,n)
1 ,

ε1n
−(1−η)

d1
, γ1 ,

σ2
1

d2
1

with d1 and σ2
1 as defined in the previous slide.
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Application 1: MDP for Binary Hypothesis Testing

Moderate-Deviations Analysis via the Martingale Approach (Cont.)

The concentration inequality in Theorem 2 and a simple inequality

give that, under hypothesis H1, for every η ∈
(

1
2 , 1
)
,

α(1)
n ≤ exp

(
−ε2

1 n2η−1

2σ2
1

(
1 − ε1d1

3σ2
1(1 + γ1)

1

n1−η

))

so this upper bound on the overall probability of either making an
error or declaring an erasure under hypothesis H1 decays
sub-exponentially to zero. It improves by increasing η ∈ (1

2 , 1).

On the other hand, the exponential decay of the probability of error

α
(2)
n improves as the value of η ∈ (1

2 , 1) is decreased (since the margin
for making an error is increased).
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Application 1: MDP for Binary Hypothesis Testing

Moderate-Deviations Analysis via the Martingale Approach (Cont.)

Moderate-deviations analysis reflects, as can be expected, a tradeoff
between the two αn’s and also between the two βn’s. But all decay
asymptotically to zero as n tends to infinity (which is indeed consistent
with the SLLN).
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Application 1: MDP for Binary Hypothesis Testing

Moderate-Deviations Analysis via the Martingale Approach (Cont.)

The following upper bound implies that

lim
n→∞

n1−2η ln Pn
1

(
L(Xn

1 ) ≤ nλ
(n)) ≤ − ε2

1

2σ2
1

.

I. Sason (Technion) Seminar Talk, ETH, Zurich, Switzerland August 22–23, 2012. 38 / 90



Application 1: MDP for Binary Hypothesis Testing

Moderate-Deviations Analysis via the Martingale Approach (Cont.)

The following upper bound implies that

lim
n→∞

n1−2η ln Pn
1

(
L(Xn

1 ) ≤ nλ
(n)) ≤ − ε2

1

2σ2
1

.

Question:

But, does the upper bound reflect the correct asymptotic scaling of this
probability ?
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Application 1: MDP for Binary Hypothesis Testing

Moderate-Deviations Analysis via the Martingale Approach (Cont.)

The following upper bound implies that

lim
n→∞

n1−2η ln Pn
1

(
L(Xn

1 ) ≤ nλ
(n)) ≤ − ε2

1

2σ2
1

.

Question:

But, does the upper bound reflect the correct asymptotic scaling of this
probability ?

Reply:

Indeed, it follows from the moderate-deviations principle (MDP) for
real-valued RVs.
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Application 1: MDP for Binary Hypothesis Testing

Moderate-Deviations Principle (MDP) for Real-Valued RVs

Theorem

Let {Xi} be i.i.d. random real-valued RVs, satisfying

E[Xi] = 0, Var(Xi) = σ2, |Xi| ≤ d

and let η ∈ (1
2 , 1). Then, for every α > 0,

lim
n→∞

n1−2η ln P

(∣∣∣
n∑

i=1

Xi

∣∣∣ ≥ αnη

)
= − α2

2σ2
, ∀α ≥ 0.
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Application 1: MDP for Binary Hypothesis Testing

Moderate-Deviations Analysis via the Martingale Approach (Cont.)

The MDP shows that this inequality holds in fact with equality.

⇒ The refined inequality in Theorem 2 gives the correct asymptotic
scaling in this case. It also gives an analytical bound for finite n.

This is in contrast to the analysis which follows from the
Azuma-Hoeffding inequality, which does not coincide with the correct

asymptotic scaling (since − ε2
1

2σ2
1

is replaced by − ε2
1

2d2
1
, and σ1 ≤ d1).

In the considered setting of moderate-deviations analysis for binary
hypothesis testing, the error probability decays sub-exponentially to 0.
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Application 1: MDP for Binary Hypothesis Testing

Papers on Moderate-Deviations Analysis in IT Aspects
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coding: discrete memoryless case,” Proc. ISIT 2010, pp. 265–269, Austin,
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3 D. He, L. A. Lastras-Montaño, E. Yang, A. Jagmohan and J. Chen, “On the
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vol. 55, no. 12, pp. 5607–5627, December 2009.

4 Y. Polyanskiy and S. Verdú, “Channel dispersion and moderate-deviations
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Application 2 - Concentration of Martingales in Coding Theory

Concentration Phenomena for Codes Defined on Graphs

Motivation & Background

The performance analysis of a particular code is difficult, especially
for codes of large block lengths.
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Motivation & Background

The performance analysis of a particular code is difficult, especially
for codes of large block lengths.

Does the performance concentrate around the average performance of
the ensemble ?
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Application 2 - Concentration of Martingales in Coding Theory

Concentration Phenomena for Codes Defined on Graphs

Motivation & Background

The performance analysis of a particular code is difficult, especially
for codes of large block lengths.

Does the performance concentrate around the average performance of
the ensemble ?

The existence of such a concentration validates the use of the density
evolution technique as an analytical tool to assess performance of
long enough codes (e.g., LDPC codes) and to assess their asymptotic
gap to capacity.
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Application 2 - Concentration of Martingales in Coding Theory

Concentration Phenomena for Codes Defined on Graphs

Motivation & Background

The performance analysis of a particular code is difficult, especially
for codes of large block lengths.

Does the performance concentrate around the average performance of
the ensemble ?

The existence of such a concentration validates the use of the density
evolution technique as an analytical tool to assess performance of
long enough codes (e.g., LDPC codes) and to assess their asymptotic
gap to capacity.

The current concentration results for codes defined on graphs, which
mainly rely on the Azuma-Hoeffding inequality, are weak since in
practice concentration is observed at much shorter block lengths.
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Application 2 - Concentration of Martingales in Coding Theory

Performance under Message-Passing Decoding

Theorem I - [Concentration of performance under iterative
message-passing decoding (Richardson and Urbanke, 2001)]

Let C, a code chosen uniformly at random from the ensemble
LDPC(n, λ, ρ), be used for transmission over a memoryless binary-input
output-symmetric (MBIOS) channel. Assume that the decoder performs l

iterations of message-passing decoding, and let Pb(C, l) denote the
resulting bit error probability. Then, for every δ > 0, there exists an α > 0
where α = α(λ, ρ, δ, l) (independent of the block length n) such that

P
(
|Pb(C, l) − ELDPC(n,λ,ρ)[Pb(C, l)]| ≥ δ

)
≤ e−αn

Proof

The proof applies Azuma’s inequality to a martingale sequence with
bounded differences (IEEE Trans. on IT, Feb. 2001).
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Application 2 - Concentration of Martingales in Coding Theory

Conditional Entropy of LDPC code ensembles

Theorem II - [Concentration of Conditional Entropy of LDPC
code ensembles (Méasson et al. 2008)]

Let C be chosen uniformly at random from the ensemble LDPC(n, λ, ρ).
Assume that the transmission of the code C takes place over an MBIOS
channel. Let H(X|Y) designate the conditional entropy of the
transmitted codeword X given the received sequence Y from the channel.
Then, for any ξ > 0,

P
(
|H(X|Y) − ELDPC(n,λ,ρ)[H(X|Y)]| ≥ √

n ξ
)
≤ 2 exp(−Bξ2)

where B , 1
2(dmax

c +1)2(1−Rd)
, dmax

c is the maximal check-node degree, and

Rd is the design rate of the ensemble.
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Proof - [outline]

1 Introduction of a martingale sequence with bounded differences:
I Define the RV Z = HG(X|Y), where G is a graph of a code chosen

uniformly at random from the ensemble LDPC(n, λ, ρ)
I Define the martingale sequence Zt = E[Z|Ft] t ∈ {0, 1, . . . , m},

where the filtration is the sequence of subsets of σ-algebras, generated
by revealing each time another parity-check equation of the code.

2 Upper bounds on the differences |Zt+1 − Zt|:
I It was proved that |Zt+1 − Zt| ≤ (r + 1)HG(X̃ |Y), where r is the

degree of parity-check equation revealed at time t, and
X̃ = Xi1 ⊕ . . . ⊕ Xir

(i.e., X̃ is the modulo-2 sum of some r bits in
the codeword X).

I Then r ≤ dmax
c , and HG(X̃ |Y) ≤ 1.

3 Azuma’s inequality was applied to a get a concentration inequality,
using |Zt+1 − Zt| ≤ dmax

c + 1 for every t = 0, . . . ,m − 1 where
m = n(1 − Rd) is the number of parity-check nodes.
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Improvements to Theorem II

Improvement 1 - A tightened upper bound on the conditional entropy

Instead of upper bounding HG(X̃ |Y) by 1, which is independent of
the channel capacity (C), it can be proved that

HG(X̃ |Y) ≤ h

(
1 − C

r
2

2

)

where h is the binary entropy function to the base 2.

For a BSC or BEC, this bound can be further improved.
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Improvement 2 (trivial)

Instead of taking the trivial bound r ≤ dmax
c for all m terms in the Azuma’s

inequality, one can rely on the degree distribution of the parity-check
nodes. The number of parity-check nodes of degree r is n(1 − Rd)Γr.

Theorem III - [Tightened Expressions for B]

Considering the terms of Theorem II, applying these two improvements
yields tightened expressions for B.

General MBIOS - B , 1

2(1−Rd)
∑dmax

c
i=1 (i+1)2Γi

[
h

(
1−C

i
2

2

)]2

BSC - B , 1

2(1−Rd)
∑dmax

c
i=1 (i+1)2Γi

[
h
(

1−[1−2h−1(1−C)]i

2

)]2

BEC - B , 1

2(1−Rd)
∑dmax

c
i=1 (i+1)2Γi (1−Ci)2
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Numerical comparison for BEC and BIAWGN

Let us consider the case where

(2, 20) regular LDPC code ensemble.

Communication over a BEC or BIAWGNC with capacity of 0.98 per
channel use.

Compared to Theorems II, applying Theorem III results in tighter
expressions for B:

BIAWGN - Improvement by factor

[
h

(
1−C

dc
2

2

)]−2

= 5.134

BEC - Improvement by factor 1(
1−Cdc

)2 = 9.051
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Comparison for Heavy-Tail Poisson Distribution (Tornado Codes)

Consider the capacity-achieving Tornado LDPC code ensemble for a BEC
with erasure probability p. We wish to design a code ensemble that
achieves a fraction 1 − ε of the capacity.

Theorem II - The parity-check degree is Poisson distributed, therefore
dmax
c = ∞. Hence, B = 0 and this result is useless.

Theorem III - B scales (at least) like O

(
1

log2
(

1
ε

)
)

.

The parameter B tends to zero slowly as we let the fractional gap ε

tend to zero; this demonstrates a rather fast concentration.
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Application 2 - Concentration of Martingales in Coding Theory

Interim Conclusions

The use of Azuma’s inequality was addressed in the context of
proving concentration phenomena for code ensembles defined on
graphs and iterative decoding algorithms.

A possible tightening of a concentration inequality for the conditional
entropy of LDPC ensembles by using Azuma’s inequality, and deriving
an improved upper bound on the jumps of the martingale sequence.

The improved inequality enables to prove concentration of the
conditional entropy for ensembles of Tornado codes (in contrast to
the original concentration inequality).
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Concentration of Martingales in Coding Theory
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(Cont.)
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Orthogonal Frequency Division Multiplexing (OFDM)

The OFDM modulation converts a high-rate data stream into a
number of low-rate steams that are transmitted over parallel
narrow-band channels.

One of the problems of OFDM is that the peak amplitude of the
signal can be significantly higher than the average amplitude.

⇒ Sensitivity to non-linear devices in the communication path (e.g.,
digital-to-analog converters, mixers and high-power amplifiers).

⇒ An increase in the symbol error rate and also a reduction in the
power efficiency as compared to single-carrier systems.
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OFDM (Cont.)

Given an n-length codeword {Xi}n−1
i=0 , a single OFDM baseband

symbol is described by

s(t;X0, . . . ,Xn−1) =
1√
n

n−1∑

i=0

Xi exp
(j 2πit

T

)
, 0 ≤ t ≤ T.

Assume that X0, . . . ,Xn−1 are i.i.d. complex RVs with |Xi| = 1.
Since the sub-carriers are orthonormal over [0, T ], then a.s. the power
of the signal s over this interval is 1.

The CF of the signal s, composed of n sub-carriers, is defined as

CFn(s) , max
0≤t≤T

|s(t)|.

The CF scales with high probability like
√

log(n) for large n.
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Concentration of Measures

In the following, we consider two of the main approaches for proving
concentration inequalities, and apply them to prove concentration for
the crest factor of OFDM signals.

1 The 1st approach is based on martingales (the Azuma-Hoeffding
inequality and some refinements).

2 The 2nd approach is based on Talagrand’s inequalities.
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A Previously Reported Result

A concentration inequality for the CF of OFDM signals was derived (Litsyn
and Wunder, IEEE Trans. on IT, 2006). It states that for every c ≥ 2.5

P

(∣∣∣CFn(s) −
√

log(n)
∣∣∣ <

c log log(n)√
log(n)

)
= 1 − O

(
1

(
log(n)

)4

)
.
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Theorem - [McDiarmid’s Inequality]

Let X = (X1, . . . ,Xn) be a vector of independent random variables
with Xk taking values in a set Ak for each k.

Suppose that a real-valued function f , defined on
∏

k Ak, satisfies

|f(x) − f(x′)| ≤ ck

whenever the vectors x and x′ differ only in the k-th coordinate.

Let µ , E[f(X)] be the expected value of f(X).

Then, for every α ≥ 0,

P(|f(X) − µ| ≥ α) ≤ 2 exp

(
− 2α2

∑
k c2

k

)
.
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Proving Concentration of the CF for OFDM Signals

Consider the case where {Xj}n−1
j=0 are independent complex-valued random

variables with magnitude 1, attaining the M points of an M -ary PSK
constellation with equal probability.
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Proving Concentration via the Azuma-Hoeffding Inequality

Let us define

Yi = E[CFn(s) |X0, . . . ,Xi−1], i = 0, . . . , n.

{Yi,Fi}n
i=0 is a martingale where Fi is the σ-algebra generated by

(X0, . . . ,Xi−1).

This martingale has bounded jumps: |Yi − Yi−1| ≤ 2√
n

(revealing the

i-th coordinate Xi affects the CF by at most 2√
n
).

It follows from the Azuma-Hoeffding inequality that, for every α > 0,

P(|CFn(s) − E[CFn(s)]| ≥ α) ≤ 2 exp

(
−α2

8

)

which demonstrates concentration around the expected value.
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Proving Concentration via Martingales (cont.)

The refined version of the Azuma-Hoeffding inequality improves the
exponent by a factor of 2, due to the additional information on the
conditional variance.

P(|CFn(s) − E[CFn(s)]| ≥ α) ≤ 2 exp

(
−α2

4

(
1 + O

( 1√
n

))
.

McDiarmid’s inequality implies that, for every α ≥ 0,

P(|CFn(s) − E[CFn(s)]| ≥ α) ≤ 2 exp
(
−α2

2

)

⇒ The exponent improves by a factor of 4 as compared to the
Azuma-Hoeffding inequality.

The same kind of result can be applied to QAM-modulated OFDM
signals, since the independent RVs {Xj} are bounded.
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Talagrand’s Inequality

Talagrand’s Inequality

Talagrand’s inequality is an approach used for establishing
concentration results on product spaces, and this technique was
introduced in Talagrand’s landmark paper from 1995.

We provide in the following two definitions that will be required for
the introduction of a special form of Talagrand’s inequalities.
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Talagrand’s Inequality

Talagrand’s Inequality (Cont.)

Let x,y be two n-length vectors. The Hamming distance between x

and y is the number of coordinates where x and y disagree, i.e.,

dH(x,y) ,

n∑

i=1

I{xi 6=yi}

where I stands for the indicator function.

Generalization and normalization of the previous distance metric:

Let a = (a1, . . . , an) ∈ R
n
+ (i.e., a is a non-negative vector) satisfy

||a||2 = 1. Then, define

da(x,y) ,

n∑

i=1

aiI{xi 6=yi}.

Hence, dH(x,y) =
√

n da(x,y) for a =
(

1√
n
, . . . , 1√

n

)
.
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Talagrand’s Inequality

Special Form of Talagrand’s Inequality (Cont.)

Let the random vector X = (X1, . . . ,Xn) be vector of independent
random variables with Xk taking values in a set Ak, and let
A ,

∏n
k=1 Ak. Let f : A → R satisfy the condition that, for every x ∈ A,

there exists a non-negative, normalized n-length vector a = a(x) such that

f(x) ≤ f(y) + σda(x,y), ∀y ∈ A

for some fixed value σ > 0. Then, for every α ≥ 0,

P(|f(X) − m| ≥ α) ≤ 4 exp

(
− α2

4σ2

)

where m is the median of f(X)
(i.e., P(f(X) ≤ m) ≥ 1

2 and P(f(X) ≥ m) ≥ 1
2).
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Establishing Concentration via Talagrand’s Inequality

Let us assume that X0, Y0, . . . ,Xn−1, Yn−1 are i.i.d. bounded
complex RVs, and also for simplicity |Xi| = |Yi| = 1.

In order to apply Talagrand’s inequality to prove concentration, note
that

max
0≤t≤T

∣∣ s(t;X0, . . . ,Xn−1)
∣∣− max

0≤t≤T

∣∣ s(t;Y0, . . . , Yn−1)
∣∣

≤ max
0≤t≤T

∣∣ s(t;X0, . . . ,Xn−1) − s(t;Y0, . . . , Yn−1)
∣∣

≤ 1√
n

∣∣∣∣∣

n−1∑

i=0

(Xi − Yi) exp
(j 2πit

T

)∣∣∣∣∣

≤ 1√
n

n−1∑

i=0

|Xi − Yi|

≤ 2√
n

n−1∑

i=0

I{xi 6=yi}
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Application 2: Concentration for OFDM Signals

Establishing Concentration via Talagrand’s Inequality (Cont.)

Talagrand’s inequality implies that, for every α ≥ 0,

P(|CFn(s) − mn| ≥ α) ≤ 4 exp
(
−α2

16

)
, ∀α > 0

where mn is the median of the crest factor for OFDM signals that are
composed of n sub-carriers.

This inequality demonstrates the concentration of this measure
around its median.
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Establishing Concentration via Talagrand’s Inequality (Cont.)

Corollary

The median and expected value of the crest factor differ by at most a
constant, independently of the number of sub-carriers n.

Proof: From Talagrand’s inequality

|E[CFn(s)] − mn|
≤ E |CFn(s) − mn|

=

∫ ∞

0
P(|CFn(s) − mn| ≥ α) dα ≤ 8

√
π.

where the equality holds since for a non-negative random variable Z

E[Z] =

∫ ∞

0
P(Z ≥ t) dt.
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Achievable Rates of Random Codes in Nonlinear Channels

Non-Linear Channels

Non-linear effects are typically encountered in wireless and optical
communication systems:

Traveling-wave tube amplifiers (TWTA) on board satellites operate at
or near the saturation region to obtain high power efficiency.

Non-linearities in optical fibers.

Non-linear effects ⇒ Degradation of the quality of info. transmission.
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Nonlinear Volterra channels

Input-output model: yi = [Du]i + νi (i is the time index).

Volterra’s operator D of order L and memory q:

[Du]i = h0 +

L∑

j=1

q∑

i1=0

. . .

q∑

ij=0

hj(i1, . . . , ij)ui−i1 . . . ui−ij .

ν is an additive Gaussian noise vector with i.i.d. components
νi ∼ N (0, σ2

ν).

u y

Gaussian noise

ν

Volterra

Operator D
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Goal

Establishing new achievable rates for non-linear Volterra communication
channels, and exemplifying the characteristics of these rates.

In this part of the talk

New achievable rates for nonlinear Volterra channels are derived.

The approach relies on exponential martingale inequalities that form
some refined versions of the Azuma-Hoeffding inequality.

The bounds are applied to linear channels with or without memory,
memoryless nonlinear channels, and Volterra (non-linear) models.
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Achievable Rates of Random Coding under ML Decoding

Setting

Consider an ensemble of block codes C of length N and rate R.

Let C ∈ C be a codebook in the ensemble. The number of codewords
in C is M = dexp(NR)e.
The codewords of a codebook C are assumed to be independent, and
the symbols in each codeword are assumed to be i.i.d. with an
arbitrary probability distribution P .

An ML decoding algorithm is assumed.
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Achievable Rates of Random Coding (Cont.)

Analysis

An ML decoding error occurs if, given the transmitted message m and
the received vector y, there exists another message m′ 6= m such that

||y − Dum′ ||2 ≤ ||y − Dum||2.

The union bound for an AWGN channel implies that

Pe|m(C) ≤
∑

m′ 6=m

Q

(‖Dum − Dum′‖2

2σν

)

where

Q(x) ,
1√
2π

∫ ∞

x

exp
(
− t2

2

)
dt, ∀x ∈

is the complementary Gaussian cumulative distribution function.
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Achievable Rates of Random Coding (Cont.)

Analysis (Cont.)

Since Q(x) ≤ 1
2 exp

(
−x2

2

)
for x ≥ 0, then for ρ ∈ [0, 1]

Pe|m(C) ≤
∑

m′ 6=m

exp

(
−ρ ‖Dum − Dum′‖2

2

8σ2
ν

)
.

At this stage, the optimal value is ρopt = 1.

The average ML decoding error probability over the ensemble satisfies

P e|m ≤ E



∑

m′ 6=m

exp

(
−ρ ‖Dum − Dum′‖2

2

8σ2
ν

)
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Achievable Rates of Random Coding (Cont.)

Analysis (Cont.)

The average ML decoding error probability over the code ensemble
and the transmitted message satisfies, for an arbitrary ρ ∈ [0, 1],

P e ≤ (M − 1) E

[
exp

(
−ρ ‖Du− Dũ‖2

2

8σ2
ν

)]

where the expectation is taken over two randomly chosen codewords
u and ũ where these codewords are independent, and their symbols
are i.i.d. with a probability distribution P .

Consider a filtration F0 ⊆ F1 ⊆ . . . ⊆ FN where Fi is given by

Fi , σ(U1, Ũ1, . . . , Ui, Ũi), ∀ i ∈ {1, . . . , N}

for two randomly selected codewords u = (u1, . . . , uN ), and
ũ = (ũ1, . . . , ũN ) from the codebook.
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Achievable Rates of Random Coding (Cont.)

Analysis (Cont.)

Fi is the minimal σ-algebra that is generated by the first i

coordinates of these two codewords.

Define the discrete-time martingale {Xk,Fk}N
k=0 by

Xk = E[||Du − Dũ||22 | Fk]

designates the conditional expectation of the squared Euclidean
distance between the distorted codewords Du and Dũ given the first
i coordinates of the two codewords u and ũ.

The first and last elements of this martingale sequence are,
respectively, equal to

X0 = E [||Du − Dũ||22], XN = ||Du− Dũ||22.
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Achievable Rates of Random Coding (Cont.)

Analysis (Cont.)

Let ξk = Xk − Xk−1 be the jumps of the martingale, then

N∑

k=1

ξk = XN − X0 = ||Du − Dũ||22 − E [||Du − Dũ||22].

Hence, substitution in the bound two slides earlier gives

P e ≤ exp(NR) exp

(
−ρ E

[
||Du − Dũ‖|22

]

8σ2
ν

)
E

[
exp

(
− ρ

8σ2
·

N∑

k=1

ξk

)]
.
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Achievable Rates of Random Coding (Cont.)

Analysis (Cont.)

Since the codewords are independent and their symbols are i.i.d., then
it follows that

E||Du− Dũ||22 = 2




q−1∑

k=1

Var
(
[Du]k

)
+

N∑

k=q

Var
(
[Du]k

)

 .

Due to the channel model and the assumption that the symbols {ui}
are i.i.d., it follows that Var

(
[Du]k

)
is fixed for k = q, . . . ,N .

Let Dv(P ) designate this common value of the variance (i.e.,
Dv(P ) = Var

(
[Du]k

)
for k ≥ q), then

E||Du − Dũ||22 = 2

(
q−1∑

k=1

Var
(
[Du]k

)
+ (N − q + 1)Dv(P )

)
.
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Achievable Rates of Random Coding (Cont.)

Analysis (Cont.)

Assume that ||u||∞ ≤ K < +∞ holds a.s. for some K > 0, and it is
independent of the block length N .

It implies that, for some finite constant C(P ) and for every ρ ∈ [0, 1]

P e ≤ Cρ(P ) exp

{
−N

(
ρDv(P )

4σ2
ν

− R

)}
E

[
exp

(
ρ

8σ2
ν

·
N∑

k=1

Zk

)]
,

where Zk , −ξk, so {Zk,Fk} is a martingale-difference that
corresponds to the jumps of the martingale {−Xk,Fk}.

Zk = Xk−1 − Xk

= E[||Du − Dũ||22 | Fk−1] − E[||Du− Dũ||22 | Fk].
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Martingale Inequalities

Theorem 1

Let {Xk,Fk}n
k=0, for some n ∈ N, be a discrete-parameter, real-valued

martingale with bounded jumps. Let

ξk , Xk − Xk−1, ∀ k ∈ {1, . . . , n}

designate the jumps of the martingale. Assume that, for some constants
d, σ > 0, the following two requirements

ξk ≤ d, Var(ξk|Fk−1) ≤ σ2

hold almost surely (a.s.) for every k ∈ {1, . . . , n}. Let γ , σ2

d2 . Then, for
every t ≥ 0,

E

[
exp

(
t

n∑

k=1

ξk

)]
≤
(

e−γtd + γetd

1 + γ

)n

.
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Martingale Inequalities (Cont.)

Theorem 2

Let {Xk,Fk}n
k=0, for some n ∈ N, be a discrete-time, real-valued

martingale with bounded jumps. Let ξk , Xk − Xk−1, ∀ k ∈ {1, . . . , n}
and let m ∈ N be an even number, d > 0 be a positive number, and
{µl}m

l=2 be a sequence of numbers such that

ξk ≤ d, E
[
(ξk)

l | Fk−1

]
≤ µl, ∀ l ∈ {2, . . . ,m}

holds a.s. for every k ∈ {1, . . . , n}. Furthermore, let γl ,
µl

dl for every
l ∈ {2, . . . ,m}. Then, for every t ≥ 0,

E

[
exp

(
t

n∑

k=1

ξk

)]
≤
(

1 +
m−1∑

l=2

(γl − γm) (td)l

l!
+ γm(etd − 1 − td)

)n

.
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Achievable Rates for Random Coding

First Bounding Technique

The maximal achievable rate for random coding, which follows from the
union bound and Theorem 1, is given by

R1(σ
2
ν) = max

P






D

((
γ2

1+γ2
+ 2Dv(P )

d(1+γ2)

) ∣∣∣∣ γ2
1+γ2

)
, if Dv(P ) <

γ2 d

(
exp

(
d(1+γ2)

8σ2
ν

)
−1

)

2

(
1+γ2 exp

(
d(1+γ2)

8σ2
ν

))

Dv(P )

4σ2
ν

− ln

(
exp

(
−

γ2 d

8σ2
ν

)
+γ2 exp

(
d

8σ2
ν

)

1+γ2

)
, otherwise

where

D(p||q) , p ln

(
p

q

)
+ (1 − p) ln

(
1 − p

1 − q

)
, ∀ p, q ∈ (0, 1).
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Achievable Rates for Random Coding

Second Bounding Technique

Assume that for some even number m ∈ N

Zk ≤ d, E
[
(Zk)

l | Fk−1

]
≤ µl, ∀ l ∈ {2, . . . ,m}

hold a.s. for some positive constant d > 0 and a sequence {µl}m
l=2.

Let γl ,
µl

dl for every l ∈ {2, . . . ,m}.
The maximal achievable rate that follows from Theorem 2 is given by

R2(σ
2
ν) , max

P
max
ρ∈[0,1]

{
ρDv(P )

4σ2
ν

− ln

(
1 +

m−1∑

l=2

γl − γm

l!

(
ρd

8σ2
ν

)l

+ γm

(
exp
( ρ d

8σ2
ν

)
− 1 − ρ d

8σ2
ν

))}
.
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Achievable Rates for Random Coding over Specific

Channel Models

Example: Binary-Input AWGN Channel

Consider the case of a binary-input AWGN channel where

Yk = Uk + νk

where Ui = ±A for some constant A > 0 is a binary input, and
νi ∼ N (0, σ2

ν) is an additive Gaussian noise with zero mean and
variance σ2

ν .

Since the codewords U = (U1, . . . , UN ) and Ũ = (Ũ1, . . . , ŨN ) are
independent and their symbols are i.i.d., let for some α ∈ [0, 1]

P (Uk = A) = P (Ũk = A) = α,

P (Uk = −A) = P (Ũk = −A) = 1 − α.
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Achievable Rates for Random Coding: Examples

Example: Binary-Input AWGN Channel (Cont.)

Since the channel is memoryless and the all the symbols are i.i.d.

Zk = E[||U − Ũ||22 | Fk−1] − E[||U − Ũ||22 | Fk]

= 8α(1 − α)A2 − (Uk − Ũk)
2.

⇒ For every k, Zk ≤ 8α(1 − α)A2 , d, and for every k, l ∈ N

E
[
(Zk)

l | Fk−1

]

=
[
1 − 2α(1 − α)

](
8α(1 − α)A2

)l
+ 2α(1 − α)

(
8α(1 − α)A2 − 4A2

)l

, µl.

⇒ γl ,
µl

dl =
[
1 − 2α(1 − α)

] [
1 + (−1)l

(
1−2α(1−α)
2α(1−α)

)l−1
]

.
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Achievable Rates for Random Coding: Examples

Example: Binary-Input AWGN Channel (Cont.)

Assume that the binary input is symmetric, so α = 1
2 and P = (1

2 , 1
2).

In this case,

Dv(P ) = Var(Uk) = A2, d = 2A2, γl =
1 + (−1)l

2
, ∀ l ∈ N.

In this case, the first and second achievable rates coincide when one
takes m → ∞ (with m even).

The common value in this case is

R1(SNR) =
SNR

4
− ln cosh

(
SNR

4

)

in units of nats per channel use where SNR , A2

σ2
ν

designates the

signal to noise ratio.
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Achievable Rates for Random Coding: Examples

Example: Binary-Input AWGN Channel (Cont.)
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A comparison between the symmetric i.i.d. mutual information of the
binary-input AWGN channel (solid line) and the achievable rate (dashed
line) that follows from the martingale approach & the union bound.
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Achievable Rates for Random Coding: Examples

A 3-rd order Volterra channel

Kernels of a 3rd order Volterra system with memory 2

kernel h1(0) h1(1) h1(2) h2(0, 0) h2(1, 1) h2(0, 1)
value 1.0 0.5 −0.8 1.0 −0.3 0.6

kernel h3(0, 0, 0) h3(1, 1, 1) h3(0, 0, 1) h3(0, 1, 1) h3(0, 1, 2)
value 1.0 −0.5 1.2 0.8 0.6

hj(i1, i2, . . . , ij) coefficient of ui−i1ui−i2 . . . ui−ij

Example: h1(0) → ui, h3(0, 0, 1) → u2
i ui−1

Analytic calculation of the martingale parameters d and γ2 when the
input channel is binary are done to obtain achievable rates for random
coding.
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Achievable Rates for Random Coding: Examples

A 3-rd order Volterra channel - Achievable rates
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Ongoing work (jointly with K. Xenoulis and N. Kalouptsidis)

Improvements in the low SNR regime via existing improvements to
Bennett’s inequality (http://arxiv.org/abs/1206.2592).

For time-invariant ISI channels, it is possible to calculate the
parameters {γl}l≥2 and d, so one needs to compare the achievable
rates via the martingale approach with some existing bounds.

Using better bounds than the union bound to possibly get improved
achievable rates.

The reason for the weakness of the bounds at low SNR is mainly
attributed to use of the union bound.
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This talk especially focused on concentration inequalities for
martingales, followed by some of their applications and implications in
information theory, communications and coding.

The area of concentration of measure has seen enormous growth and
tremendous activity since the early ’90s.

Several approaches, that are used to derive concentration inequalities,
have been well assimilated into the culture of probability theory,
extending and generalizing results in various different directions.

These probabilistic results are useful to establish results of theoretical
and practical interest in computer science, machine learning,
information theory and statistics, communications, coding theory,
statistical physics and geometry.
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